Stat-spotting : a field guide to identifying dubious data / Joel Best.

Saved in:
Bibliographic Details
Main Author: Best, Joel
Published: Berkeley : University Of California Press, [2013], ©2013.
Edition:Updated and expanded.
Physical Description:xii, 146 pages ; 21 cm
Format: Book


LEADER 00000cam a2200000Ia 4500
001 in00005277365
003 OCoLC
005 20220616083700.0
008 130423t20132013cau b 001 0 eng d
020 |a 0520279980 
020 |a 9780520279988 
024 |a 40022819269 
035 |a (CaEvSKY)sky263164272 
035 |a (OCoLC)840582121 
040 |a YDXCP  |c YDXCP  |d BDX  |d JQW  |d VVC  |d UtOrBLW 
049 |a EEMR 
050 4 |a HM535  |b .B477 2013 
092 0 |a 301.0727  |2 23 
100 1 |a Best, Joel.  |0 
245 1 0 |a Stat-spotting :  |b a field guide to identifying dubious data /  |c Joel Best. 
250 |a Updated and expanded. 
260 |a Berkeley :  |b University Of California Press,  |c [2013], ©2013. 
300 |a xii, 146 pages ;  |c 21 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
500 |a This edition updates benchmarks, includes a new chapter on rhetoric, updated a few examples, and thoroughly updated the bibliography. 
504 |a Includes bibliographical references (pages 133-144) and index. 
505 0 |a Getting started -- Spotting questionable numbers -- Background. Statistical benchmarks. Severity and frequency -- Varieties of dubious data -- Blunders. The slippery decimal point. Botched translations. Misleading graphs. Careless calculations -- Sources: who counted--and why? Big round numbers. Hyperbole. Shocking claims. Naming the problem -- Definitions: what did they count? Broad definitions. Expanding definitions. Changing definitions. The uncounted -- Measurements: how did they count? Creating measures. Odd units of analysis. Loaded questions. Raising the bar. Technical measures -- Packaging: what are they telling us? Impressive formats. Misleading samples. Convenient time frames. Peculiar percentages, Selective comparisons. Statistical milestones. Averages. Epidemics. Correlations. Discoveries -- Rhetoric: what do they want us to think? Using short-term turnover to measure long-term problems. Sudden turns for the worse. Designating myths. Rhetorical flourishes -- Debates: what if they disagree? Causality debates. Equality debates. Policy debates -- Stat-spotting on your own. Summary: common signs of dubious data. Better data: some characteristics. Afterword: if you had no idea things were that bad, they probably aren't. Suggestions for those who want to continue stat-spotting. 
650 0 |a Sociology  |x Statistical methods.  |0 
650 0 |a Social problems  |x Statistical methods.  |0 
907 |y .b104597975  |b 160830  |c 140414 
998 |a mn  |b 140902  |c m  |d a   |e -  |f eng  |g cau  |h 0  |i 2 
999 f f |i c05eb74f-705b-5bb2-9465-2b9bb9ab51cf  |s 0dbfb82a-4ae8-5841-8e64-0672efbcd897  |t 0 
952 f f |p Can Circulate  |a Michigan State University-Library of Michigan  |b Michigan State University  |c MSU Main Library  |d MSU Main Library  |t 0  |e HM535 .B477 2013  |h Library of Congress classification  |i Printed Material  |m 31293033689997  |n 1