Integral equations in computational electromagnetics : formulations, properties and isogeometric analysis / by Jie Li.

"Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate,...

Full description

Bibliographic Details
Main Author: Li, Jie (Graduate of Michigan State University in electrical engineering) (Author)
Language:English
Published: 2018.
Subjects:
Genre:
Online Access:
Dissertation Note:
Ph. D. Michigan State University. Electrical Engineering 2018
Physical Description:1 online resource (xiii, 138 pages) : color illustrations
Format: Thesis Electronic eBook

MARC

LEADER 00000cam a2200000Ka 4500
001 in00005869618
003 OCoLC
005 20220616022902.0
006 m o d
007 cr cna||||||||
008 180806s2018 xx a obm 000 0 eng d
020 |a 9780355910575 
020 |a 0355910578 
028 5 0 |a 10808783  |b UMI 
028 5 0 |a Li_grad.msu_0128D_15959  |b local 
035 |a (OCoLC)1047957166 
040 |a EEM  |b eng  |e pn  |c EEM  |d OCL  |d OCLCQ  |d OCLCO  |d EEM  |d UtOrBLW 
049 |a QEMO  |a EEMT 
099 |a MSU ONLINE THESIS 
100 1 |a Li, Jie  |c (Graduate of Michigan State University in electrical engineering),  |e author.  |0 http://id.loc.gov/authorities/names/no2019099112 
245 1 0 |a Integral equations in computational electromagnetics :  |b formulations, properties and isogeometric analysis /  |c by Jie Li. 
260 |c 2018. 
300 |a 1 online resource (xiii, 138 pages) :  |b color illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Electronic resource. 
502 |b Ph. D.  |c Michigan State University. Electrical Engineering  |d 2018 
504 |a Includes bibliographical references (pages 128-138). 
520 3 |a "Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate, especially for scattering and radiation problems. Development and analysis electromagnetic BIEs has been a very active topic in CEM research. Indeed, there are still many open problems that need to be addressed or further studied. A short and important list includes (1) closed-form or quasi-analytical solutions to time-domain integral equations, (2) catastrophic cancellations at low frequencies, (3) ill-conditioning due to high mesh density, multi-scale discretization, and growing electrical size, and (4) lack of flexibility due to re-meshing when increasing number of forward numerical simulations are involved in the electromagnetic design process. This dissertation will address those several aspects of boundary integral equations in computational electromagnetics. The first contribution of the dissertation is to construct quasi-analytical solutions to time-dependent boundary integral equations using a direct approach. Direct inverse Fourier transform of the time-harmonic solutions is not stable due to the non-existence of the inverse Fourier transform of spherical Hankel functions. Using new addition theorems for the time-domain Green's function and dyadic Green's functions, time-domain integral equations governing transient scattering problems of spherical objects are solved directly and stably for the first time. Additional, the direct time-dependent solutions, together with the newly proposed time-domain dyadic Green's functions, can enrich the time-domain spherical multipole theory. The second contribution is to create a novel method of moments (MoM) framework to solve electromagnetic boundary integral equation on subdivision surfaces. The aim is to avoid the meshing and re-meshing stages to accelerate the design process when the geometry needs to be updated. Two schemes to construct basis functions on the subdivision surface have been explored. One is to use the div-conforming basis function, and the other one is to create a rigorous iso-geometric approach based on the subdivision basis function with better smoothness properties. This new framework provides us better accuracy, more stability and high flexibility. The third contribution is a new stable integral equation formulation to avoid catastrophic cancellations due to low-frequency breakdown or dense-mesh breakdown. Many of the conventional integral equations and their associated post-processing operations suffer from numerical catastrophic cancellations, which can lead to ill-conditioning of the linear systems or serious accuracy problems. Examples includes low-frequency breakdown and dense mesh breakdown. Another instability may come from nontrivial null spaces of involving integral operators that might be related with spurious resonance or topology breakdown. This dissertation presents several sets of new boundary integral equations and studies their analytical properties. The first proposed formulation leads to the scalar boundary integral equations where only scalar unknowns are involved. Besides the requirements of gaining more stability and better conditioning in the resulting linear systems, multi-physics simulation is another driving force for new formulations. Scalar and vector potentials (rather than electromagnetic field) based formulation have been studied for this purpose. Those new contributions focus on different stages of boundary integral equations in an almost independent manner, e.g. isogeometric analysis framework can be used to solve different boundary integral equations, and the time-dependent solutions to integral equations from different formulations can be achieved through the same methodology proposed."--Pages ii-iii. 
588 0 |a Online resource; title from PDF title page (viewed on July 5, 2019) 
650 0 |a Electromagnetism  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh85042184 
650 0 |a Integral equations.  |0 http://id.loc.gov/authorities/subjects/sh85067088 
650 0 |a Isogeometric analysis.  |0 http://id.loc.gov/authorities/subjects/sh2009005474 
655 0 |a Electronic dissertations. 
655 7 |a Academic theses.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2014026039 
650 7 |a Isogeometric analysis.  |2 fast  |0 (OCoLC)fst01748243 
650 7 |a Integral equations.  |2 fast  |0 (OCoLC)fst00975507 
650 7 |a Electromagnetism  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00906599 
655 7 |a Academic theses.  |2 fast  |0 (OCoLC)fst01726453 
856 4 0 |u http://ezproxy.msu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10808783  |z Connect to online resource - MSU authorized users  |t 0 
856 4 0 |u https://doi.org/doi:10.25335/M5G73764G  |z Connect to online resource - All users 
907 |y .b128566942  |b 220601  |c 180807 
998 |a (6)wb  |a (6)th  |b 180807  |c m  |d m   |e -  |f eng  |g xx   |h 0  |i 7 
999 f f |i 42f761c6-106c-55e5-adab-3547cd5aeca8  |s f5fd198a-a504-5c9e-9a38-9c289ca729ce  |t 0 
952 f f |p Non-Circulating  |a Michigan State University-Library of Michigan  |b Michigan State University  |c MSU Online Resource  |d MSU Online Resource  |t 0  |e MSU ONLINE THESIS  |h Other scheme  |i Electronic Resource  |n 1 
856 4 0 |t 0  |u http://ezproxy.msu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10808783  |y Connect to online resource - MSU authorized users 
856 4 0 |t 0  |u https://doi.org/doi:10.25335/M5G73764G  |y Connect to online resource - All users