Elements of structures and defects of crystalline materials [electronic resource] / Tsang-Tse Fang (National Cheng Kung University).

Bibliographic Details
Main Author: Fang, Tsang-Tse, 1955- (Author)
Language:English
Published: Amsterdam, The Netherlands ; Cambridge, MA, United States : Elsevier, [2018]
Subjects:
Online Access:
Format: Electronic eBook
Contents:
  • Machine generated contents note: pt. I Structures of the Crystalline Materials
  • 1. The Electron Configuration of Atoms
  • 1.1. Atoms With a Single Electron
  • 1.2. Atoms With More Than One Electron
  • 1.2.1. Penetration and Shielding
  • 1.2.2. Energetic d-Orbital Collapse of Free Neutral Atoms at the Beginning of the Transition Rows
  • 2. Bonding Within Crystal Structures
  • 2.1. Bonding in Ionic Crystals
  • 2.1.1. Energy for Forming the Ions From Neutral Atoms
  • 2.1.2. Thermodynamic Viewpoint of Bond Energy
  • 2.2. Covalent Bonds
  • 2.2.1. Formation Energy and Mechanism of Covalent Bonding
  • 2.3. Metallic Bonds
  • 2.3.1. Cohesive Energy of Metals
  • 2.4. Effect of Bonding on the Material Properties by Means of the Potential-Well Concept
  • 2.4.1. Elastic Modulus
  • 2.4.2. Melting Temperatures
  • 2.4.3. Thermal Property
  • 3. The Structures of Crystalline Crystals
  • 3.1. Arrangements of Atoms and Ions in Crystalline Solids: Space Lattice
  • 3.2. Metallic Structures
  • 3.3. Ionic Structures
  • 3.3.1. Pauling's Rules
  • 3.4. Structural Distortion in Ionic Structures
  • 3.4.1. Effects of Crystal Field on the Structures of the Oxides
  • 3.4.2. Crystal Field Stabilization Energy
  • 3.4.3. Effects of the d Electron Configuration on the Radii of Transition Metal Ions
  • 3.4.4. Jahn
  • Teller Distortions
  • 3.4.5. Structure Distortions Arising From Asymmetric Electron Density or Inert Pair Effect
  • 3.5. Structure of Material Technological Interest
  • 3.5.1. Structure and the Related Feature of ZnO
  • 3.5.2. Structure and the Related Feature of SiC
  • 3.5.3. Structure and the Related Feature of TiO2
  • 3.5.4. Structure and the Related Feature of ZrO2
  • 3.5.5. Structure and the Related Feature of Spinel (AB2O4)
  • 3.5.6. Structure and the Related Feature of Perovskite ABO3
  • pt. II Defects of Crystalline Materials
  • 4. Point Defects in Crystalline Materials
  • 4.1. Point Defects in Metals
  • 4.1.1. Solid Solutions
  • 4.1.2. Factors Affecting the Solubility of Impurity Atoms in a Substitutional Solid Solution
  • 4.1.3. Factors Affecting the Solubility of the Impurity Atoms in an Interstitial Solid Solution
  • 4.1.4. Equilibrium Concentration of Point Defects
  • 4.2. Point Defects in Ionic Solids
  • 4.2.1. Notation for the Description of Point Defects in Binary Metal Oxides
  • 4.2.2. Defect Structures in Stoichiometric Ionic Crystals
  • 4.2.3. Defect Structures in Nonstoichiometric Ionic Crystals
  • 4.2.4. Defect Reactions
  • 4.2.5. Formulation of Defect Equations
  • 4.2.6. Defect Equilibrium in Ionic Solids
  • 4.2.7. Defect Association
  • 5. Line Defects in Crystalline Solids
  • 5.1. The Discrepancy Between the Theoretical and Observed Yield Stresses of Crystals
  • 5.2. Observations of Dislocations
  • 5.3. Crystallographic Slip
  • 5.4. Elementary Geometric Characteristics of Dislocations
  • 5.4.1. The Edge Dislocation
  • 5.4.2. The Screw Dislocation
  • 5.4.3. The Mixed Dislocation
  • 5.5. Critical Resolved Shear Stress
  • 5.6. Plastic Flow Associated With the Slip of the Dislocation Motion
  • 5.7. Stress Fields of Dislocations
  • 5.7.1. Constitutive Equations With Lame Constants
  • 5.7.2. Stress Field of a Screw Dislocation
  • 5.7.3. Stress Fields of an Edge Dislocation
  • 5.8. Energy of a Dislocation
  • 5.8.1. Strain Energy of a Screw Dislocation
  • 5.8.2. Strain Energy of an Edge Dislocation
  • 5.9. Line Tension of a Dislocation
  • 5.10. Forces Upon Dislocations
  • 5.11. The Bowing of a Dislocation
  • 5.12. Force Between Dislocations
  • 5.13. Peach-Koehler Equation
  • 5.14. Reactions Between Dislocations
  • 5.14.1. Dislocation Nodes
  • 5.14.2. Kinks and Jogs
  • 5.14.3. Intersections of Dislocations
  • 5.15. Extended Dislocations
  • 5.15.1. Partial Dislocations
  • 5.15.2. Faults in the Stacking in FCC Crystals
  • 5.15.3. Equilibrium Separation Between Partial Dislocations
  • 6. Two-Dimensional (Interfaces) and Three-Dimensional (Second Phases) Imperfections in Solids
  • 6.1. Grain Boundaries
  • 6.1.1. Tilt Boundary
  • 6.1.2. Twist Boundary
  • 6.1.3. Coincidence Site Lattice
  • 6.2. Interphase Boundaries in Solids
  • 6.2.1. Coherent Boundary
  • 6.2.2. Incoherent Boundary
  • 6.2.3. Partially Coherent or Semicoherent Boundary
  • 6.3. Surface Tension, Surface Stress, and Surface Free Energy of Interfaces
  • 6.4. Free Surface
  • 6.4.1. Calculate the Surface Free Energy of a Pure Solid FCC Metal
  • 6.5. Interfaces of Phases
  • 6.5.1. Wetting
  • 6.5.2. Equilibrium Shapes of Grains
  • 6.5.3. Morphological Changes of Second Phases
  • 6.6. Effect of Interface Curvature on the Equilibrium Pressure Between Two Phases
  • 6.7. Effect of the Interface Curvature on the Equilibrium Solubility Between Two Phases
  • 6.8. Equilibrium Vacancy Concentration Changes at Curved Surfaces: Driving Force for Sintering.
  • Pt. 1. Structure of the crystalline materials
  • The electron configuration of atoms
  • Bonding within crystal structures
  • The structures of crystalline crystals
  • Part II. Defects of Crystalline Materials
  • Point defects in crystalline materials
  • Line defects in crystalline solids
  • Two-dimensional (interfaces) and three-dimensional (second phases) imperfections in solids.